Shakeel Ahmad (2008-VA-426)

Fractions Of Milk Fat On Lipolysis In Cheddar Cheese - 2014. - 152p.;

Lipids are heterogeneous group of biological compounds, soluble in fat and insoluble in water. Oils and fats mainly comprise of triglycerides and has great importance in Food systems. Fats and oils are completed through ester of three fatty acids and a glycerol molecule (Stolyhmo, 2007; McClement and Decker, 2010; Nichols et al. 2011). Fats have a primary importance for the texture of Foods (Rao, 2003).
Fat has more energy values as compared to other Foods nutrients (Wu et al. 2013), presently, one of the major developments is declining the cholesterol contents and fat in the Foodstuffs (Ma and Boye, 2013). Sensory attributes like appearance, flavor, texture and physicochemical properties of the Foods depend upon the fat because it is very important for the Foodstuffs improvement. For these properties, there should be practical strategies which can reduce fat contents only in the Foodstuff (Wu et al. 2013) and should not effect on nutritious and sensory properties (Boff et al. 2013).
Milk fat can be transformed into various fractions such as very high melting fraction (>50°C), high melting fraction (35-50°C), middle melting fraction (25-35°C), low melting fraction (10-25°C) and very low melting fraction (<10°C). Low melting fraction (<15°C) has strong butter flavor and can be incorporated into milk powder to improve functionality. It can be used in confectionery products and can increase spread ability of butter at low melting temperature (Gunstone, 2001).
It has been investigated that melting point of butter oil decreased with C18:2 and increased with C16:0 and C14:0 fatty acids. It has also been investigated that melting point is negatively correlated to C40, C38, C30 and C28 tri-acylglyceride while positively correlated with C48, C46 and C44 tri-acylglycerides (Ortiz-Gonzalez et al. 2007).
The anhydrous milk fat has a higher fraction of low melting tri-acylglycerids due to more unsaturated fatty acids (Smet et al. 2010).
Fatty acids are composed of carbon and hydrogen atoms having one carboxyl (COOH) group at one side of the chain (Ghatak and Bandyopadhyay, 2007). Fatty acids are divided into short, middle, long chain fatty acids and also in saturated and unsaturated fatty acids. Unsaturated fatty acids are further categorized as monounsaturated, poly unsaturated fatty acids and saturated fatty acids. Almost 65-68% saturated fatty acids of milk fat possess many health concerns (Richmond, 2007). More than 4 hundred types of fatty acids are present in milk fat of different bovine breeds. Plasma cholesterol and incidence of coronary heart disease is increased by medium chain saturated fatty acids of milk fat lauric acid (C12:0), myristic acid (C14:0) and palmitic acid (C16:0) (Jensen, 2002). Fatty acid composition of diet has a great impact on health. Considerable attention has been given on the saturated fatty acids present in diet (Astrup et al. 2011). Nutritionists recommend that saturated fatty acids should be replaced by unsaturated fatty acids to decrease the incidence of cardiovascular disease (Erkkila et al. 2008).
Medium chain fatty acids C12:0, C14:0 and C16:0 are atherogenic (Parodi, 2004; Kris-Etherton and Innis, 2007). The coronary heart diseases and atherogenic fatty acids are highly correlated (Moss and Reed, 2003; MacRae et al. 2005; Mensink, 2006). As compared to other lipids sources dairy products are well known to increase the cardiovascular diseases in human beings, because dairy products contain lower proportion of unsaturated fatty acids and higher proportion of saturated fatty acids especially palmitic and myristic fatty acids (Sacks and Katan, 2002). Dairy Foodstuffs are the sources of dietary cholesterol which increases the serum cholesterol (Collins et al. 2003).
Modification in milk fat can be carried out by chemical and enzymatic interesterification (Pal et al. 2000). Physical modification (fractionating of bovine milk fat into different fractions) of milk fat can be carried out by fractionation (Ali and Dimick, 1994). Commercial dairy industries commonly use dry fractionations to improve the texture and flavour properties of dairy products (Grall and Hartel, 1992). Nadeem et al. (2013) found in a study that long chain and short-chain fatty acids can be increased by fractionation of milk fat. Fractionation improves the functional properties of milk fat. Low melting fractions of milk fat can be used in a wide range of functional dairy products.
Cheese is worldwide extensively used dairy product. Researchers have tried to improve the unsaturated fatty acid composition of milk fat by blending with vegetable oil but the use of vegetable oils in cheese has a negative impact on texture, functional properties, excessive lipolysis and flavor characteristics of cheese (Wijesundera and Watkins, 2000;Yli-Jokipii et al. 2001; Dinkci et al. 2011). There are many factors which affect the texture and rheological properties of the cheese. These factors also effect the appearance, functional properties of the cheese and also effect the flavor of the cheese which are very important for consumer. On the base of texture varieties of cheeses are differentiated. Important property for the determination of differences in the cheeses is texture as compared to other flavor and taste property (Wendin et al. 2000)
Free fatty acids of cheddar cheese produced in the result of lipolysis are the precursors of flavor compounds (Smit et al. 2002; McSweeny, 2004). The suitability of low melting fractions of milk fat as a substrate in the manufacturing of cheddar cheese has not been previously investigated.



Department of Dairy Technology

2205,T


Implemented and Maintained by UVAS Library.
For any Suggestions/Query Contact to library or Email:rehana.kousar@uvas.edu.pk Phone:+91 99239068
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.