12654nam a22002057a 4500005001700000008004500017041000800062082001100070100003300081110002200114245006300136260001000199300001100209502121080022065000241232865000161235270000311236870000211239970000281242020161122100015.0161122b2016 xxu||||| |||| 00| 0 eng d aeng a2610-T aMohammad Salim (2007-VA-543) cDr. Arshad Javid aBats (Chiroptera: Mammalia) Of Malakand Division, Pakistan c2016. a186p.; aThe present study was conducted from 2010 to 2013 in three districts (Malakand, Dir and Swat) of Malakand Division. A total of 49 stations were sampled for bats where total 1982 bats were recorded. A total of 21 species of bats belonging to six families, fourteen genera were recorded. These includes the Indian flying fox (Pteropus giganteus), the greater short-nosed fruit bat (Cynopterus sphinx), the fulvous fruit bat (Rousettus leschenaultia), the greater mouse-tailed bat (Rhinopoma microphyllum), the lesser mouse tailed bat (Rhinopoma hardwickii), the greater false vampire (Megaderma lyra), the greater horseshoe bat (Rhinolophus ferrumequinum), the Blyth‟s horseshoe bat (Rhinolophus Lepidus), the fulvous leaf-nosed bat (Hipposideros fulvus), the Hodgson‟s bat (Myotis formosus), the Asian barbastelle (Barbastella leucomelas), the Asiatic greater yellow house bat (Scotophilus heathii), the Asiatic lesser yellow house bat (Scotophilus kuhlii), the serotine (Eptesicus serotinus), the common pipistrelle (Pipistrellus pipistrellus), the javan pipistrelle (Pipistrellus javanicus), the coromandel pipistrelle (Pipistrellus coromandra), the least pipistrelle (Pipistrellus tenuis), the Dormer‟s bat (Pipistrellus dormeri), the desert yellow bat (Scotoecus pallidus) and the Schreiber‟s long-fingered bat (Miniopterus fuliginosus) were recorded throughout the study area.
M. formosus was common to all the three districts while B. leucomelas and P. pipistrellus were captured only from Dir district. The Hodgson‟s bat (M. formosus) and the Schreiber‟s long-fingered bat (M. fuliginosus) were captured from Malakand and Swat districts. The skeleton of C. sphinx was recorded only from adjacent area of Malakand district. The Indian flying fox (Pteropus giganteus) was not previously recorded from Khyber Pakhtunkhwa while it has been reported from Punjab and Sindh province of the country. There are only six species which has
Summary
181
previously been reported from Khyber Pakhtunkhwa while thirteen bats were newly recorded from the study area. Only two bats were newly recorded for the first time in the country.
The mean forearm length of the three P. giganteus was 152.23 mm ± 3.72 (SD). The mean greatest skull length was 65.96 mm ± 1.42 (SD). The maxillary toothrow length was 24.91 mm ± 0.84 (SD). The mandible and mandibular toothrow length were 50.78 mm ± 0.87 (SD) and 27.41 mm ± 0.66 (SD), respectively.
The thumb and forearm length of one C. sphinx was 25.80 mm and 65.48 mm, respectively. The greatest length of skull was 32.20 mm. The maxillary and mandibular toothrow length were 10.86 mm and 12.64 mm. The mandible was 24.75 mm long.
The mean forearm and thumb of R. leschenaultii was 80.23 mm ± 3.26 (SD) and 27.79 mm ± 1.22 (SD), long, respectively. The mean greatest skull length was 36.97 mm ± 1.11 (SD). The mean mandible, maxillary and mandibular toothrow length were 28.95 mm ± 0.90 (SD), 14.08 mm ± 0.44 (SD) and 15.51 mm ± 0.47 (SD), respectively.
Mean thumb and forearm length of three R. microphyllum was 8.80 mm ± 0.95 (SD) and 67.45 mm ± 4.60 (SD), respectively. The mean greatest length of skull was 20.15 mm ± 0.64 (SD). The mandible, maxillary and mandibular toothrow length were 7.30 mm ± 0.18 (SD), 8.11 mm ± 0.11 (SD) and 14.38 mm ± 0.63 (SD), respectively.
Mean thumb and forearm length of R. hardwickii was 8.23 mm ± 0.38 (SD) and 59.90 mm ± 1.21 (SD), respectively. The mean greatest length of skull of the four specimens was 18.20 mm ± 0.48 (SD). The maxillary and mandibular toothrow length were 6.08 mm ± 0.07 (SD) and 6.72 mm ± 0.13 (SD), respectively. The mandible length was measured as 12.38 mm ± 0.0.23 (SD).
Mean thumb and forearm length of M. lyra was 11.80 mm ± 0.44 (SD) and 70.06 mm ± 0.69 (SD), respectively. Mean greatest length of skull of the three specimens was 29.60 mm ± 0.46
Summary
182
(SD). The maxillary toothrow length was 11.40 mm ± 0.10 (SD). The mandibular toothrow length was 11.94 mm ± 0.04 (SD). The mandible length was measured as 20.04 mm ± 0.03 (SD).
Mean thumb and forearm length of R. ferrumequinum was 4.01 mm ± 0.01 (SD) and 60.01 mm ± 1.41 (SD), respectively. The mean greatest length of skull of the two specimens was 23.35 mm ± 0.20 (SD). The maxillary toothrow length was 9.18 mm ± 0.02 (SD). The mandibular toothrow length was 9.86 mm ± 0.01 (SD). The mandible length was measured as 16.33 mm ± 0.13 (SD).
The mean thumb and forearm length of R. lepidus was 3.87 mm ±0.13 (SD) and 38.02 mm ± 0.63 (SD), respectively. The mean greatest length of skull of the two specimens was 15.94 mm ± 0.15 (SD). The maxillary toothrow length was 5.86 mm ± 0.02 (SD). The mandibular toothrow length was 6.57 mm ± 0.64 (SD). The mandible length was measured as 10.34 mm ± 0.04 (SD).
Mean thumb and forearm length of H. fulvus was 4.91 mm ± 0.17 (SD) and 41.41 mm ± 0.97 (SD), respectively. The mean greatest length of skull of the thirteen specimens was 18.45 mm ± 0.16 (SD). The maxillary toothrow length was 6.50 mm ± 0.14 (SD). The mandibular toothrow length was 6.96 mm ± 0.18 (SD). The mandible length was measured as 11.73 mm ± 0.14 (SD).
Mean thumb and forearm length of M. formosus was 9.26 mm ± 0.70 (SD) and 48.74 mm ± 2.02 (SD), respectively. The mean greatest length of skull of the three specimens was 17.81 mm ± 0.12 (SD). The maxillary toothrow length was 7.15 mm ± 0.05 (SD). The mandibular toothrow length was 7.80 mm ± 0.05 (SD). The mandible length was measured as 13.85 mm ± 0.07 (SD).
Thumb and forearm length of B. leucomelas was 5.65 mm and 42.88 mm, respectively. The tragus height was 10.32 mm. The greatest length of skull of a single specimen was 15.87 mm. The maxillary toothrow length was 4.91 mm. The mandibular toothrow length was 5.43 mm. The mandible length was measured as 10.02 mm.
Summary
183
Mean thumb and forearm length of S. heathii was 9.06 mm ± 0.41 (SD) and 62.25 mm ± 1.76 (SD), respectively. The mean greatest length of skull of the nine specimens was 23.12 mm ± 0.46 (SD). The maxillary toothrow length was 7.87 mm ± 0.16 (SD). The mandibular toothrow length was 8.93 mm ± 0.16 (SD). The mandible length was measured as 16.62 mm ± 0.19 (SD).
Mean thumb and forearm length of S. kuhlii was 7.01 mm ± 1.41 (SD) and 50.06 mm ± 7.13 (SD), respectively. The mean greatest length of skull of the two specimens was 19.24 mm ± 0.71 (SD). The maxillary toothrow length was 6.49 mm ± 0.11 (SD). The mandibular toothrow length was 7.42 mm ± 0.01 (SD). The mandible length was measured as 13.78 mm ± 0.47 (SD).
Mean thumb and forearm length of E. serotinus was 8.92 mm ± 0.32 (SD) and 53.37 mm ± 1.39 (SD), respectively. The mean greatest length of skull of the fifteen specimens was 21.40 mm ± 0.70 (SD). The maxillary toothrow length was 7.84 mm ± 0.21 (SD). The mandibular toothrow length was 9.28 mm ± 1.95 (SD). The mandible length was measured as 15.51 mm ± 1.94 (SD).
Thumb and forearm length of P. pipistrellus was 4.01 mm and 31.06 mm, respectively. The greatest length of skull of a single specimen was 12.14 mm. The maxillary toothrow length was 4.22 mm. The mandibular toothrow length was 4.45 mm. The mandible length was measured as 8.27 mm.
Thumb and forearm length of P. javanicus was 4.02 mm and 32.01 mm, respectively. The greatest length of skull of a single specimen was 13.13 mm. The maxillary toothrow length was 4.60 mm. The mandibular toothrow length was 5.20 mm. The mandible length was measured as 9.46 mm.
Mean thumb and forearm length of P. coromandra was 4.70 mm ± 0.45 (SD) and 32.28 mm ± 1.17 (SD), respectively. The mean greatest length of skull of the eight specimens was 12.67 mm
Summary
184
± 0.40 (SD). The maxillary toothrow length was 4.44 mm ± 0.24 (SD). The mandibular toothrow length was 4.74 mm ± 0.23 (SD). The mandible length was measured as 9.13 mm ± 0.46 (SD).
Mean thumb and forearm length of P. tenuis was 4.43 mm ± 0.47 (SD) and 29.24 mm ± 1.03 (SD), respectively. The mean greatest length of skull of the 23 specimens was 11.56 mm ± 0.25 (SD). The maxillary toothrow length was 3.87 mm ± 0.09 (SD). The mandibular toothrow length was 4.10 mm ± 0.06 (SD). The mandible length was measured as 7.89 mm ± 0.60 (SD).
Mean thumb and forearm length of P. dormeri was 5.28 mm ± 0.70 (SD) and 34.30 mm ± 1.25 (SD), respectively. The mean greatest length of the skull was 13.77 mm ± 0.11 (SD). The mandible, maxillary and mandibular toothrow length were measured as 10.53 mm ± 0.09 (SD), 5.33 mm ± 0.02 (SD) and 5.56 mm ± 0.07 (SD), respectively.
Mean thumb and forearm length of S. pallidus was 6.26 mm ± 0.41 (SD) and 36.83 mm ± 0.42 (SD), respectively. The mean greatest length of skull of the twenty two specimens was 15.00 mm ± 0.26 (SD). The maxillary toothrow length was 5.66 mm ± 0.10 (SD). The mandible and mandibular toothrow length were 11.35 mm ± 0.23 (SD) and 6.11 mm ± 0.12 (SD), respectively.
Mean thumb and forearm length of M. fuliginosus bat was 6.61 mm ± 0.43 (SD) and 37.59 mm ± 5.37 (SD), respectively. The mean greatest length of skull of the six specimens was 14.48 mm ± 0.58 (SD). The maxillary toothrow length was 5.32 mm ± 0.39 (SD). The mandible and mandibular toothrow length were 10.54 mm ± 0.65 (SD) and 5.71 mm ± 0.49 (SD), respectively.
FUTURE RECOMMENDATIONS
1. Bat surveys. This is the first extensive exploration of that small portion of the Khyber Pakhtunkhwa which comprises of only three districts of Malakand Division i.e. Malakand, Dir and Swat. Although more focus remained towards Malakand district, six families, fourteen genera, twenty one species were identified. Moreover, two new country
Summary
185
records (Myotis formosus and Miniopterus fuliginosis) were also explored. Further bat surveys in poorly surveyed parts of the country especially in KPK and Baluchistan may result in identification of some other new bat taxa. More bat surveys involving greater field efforts may also confirm the presence or absence of those already described from the country.
2. Distribution ranges and species specific habitat analysis. Presence of thirteen new locality records (Pteropus giganteus, Cynopterus sphinx, Rhinopoma hardwickii, Megaderma lyra, Rhinolophus Lepidus, Hipposideros fulvus, Barbastella leucomelas, Scotophilus heathii, Scotophilus kuhlii, Eptesicus serotinus, Pipistrellus javanicus, Pipistrellus dormeri and Scotoecus pallidus) and two new country records (Myotis formosus and Miniopterus fuliginosis) gives credence to the idea that distribution ranges of most of the bat species has change over the past sixty years. Thus serious scientific studies are needed to redefine distribution ranges and identify species specific habitats using global positioning system and radio-telemetric studies.
3. Reconfirmation of bat taxonomy. Genetic analysis of none of the bat species of the country has been made using molecular markers thus leaving behind a chance to doubt identification of cryptic bat species. Thus molecular genetic studies of all the bat species of the country is highly recommended which may also lead to the discovery of such bat taxa which are new to science.
4. Bat call library. The only bat detector (Patterson D 1000X) present in the country fell down from my hand in a water body and became out of order. So none of the bat could be recorded. Bat call analysis has boosted bat identification throughout the world but the
Summary
186
lack of such sophisticated equipment in the country has become a major bottle neck in the establishment of a bat call library.
5. Awareness campaigns. Majority of the countrymen are unaware of the ecological services rendered by bats. Khyber Pakhtunkhwa is the major fruit growing region of the country. Based on misperceptions, the locals consider all bats as vermin and kill them ruthlessly. Conservation education to highlight the significance of bats must be included in the curriculum of children at primary school level so that they may adopt a pro-conservation attitude in the first few years of their personality building. aWildlife & Ecology aPhd. theses aDr. Muhammad Sajid Nadeem aDr. Zulfiqar Ali aProf. Dr. Azhar Maqbool