Your search returned 4 results. Subscribe to this search

Not what you expected? Check for suggestions
|
1. Quality Evaluation Of Different Brands Of Ceftriaxone

by Sana Tariq | Prof. Dr. Muhammad Ashraf | Dr. Muhammad Adil Rasheed | Miss Huma.

Material type: book Book; Format: print ; Literary form: drama Publisher: 2012Dissertation note: This study was designed to determine the physicochemical equivalence of selected brands of ceftriaxone sodium registered with the ministry of health government of Islamic republic of Pakistan. Out of 9 selected brands 3 were of lowest price distribution class, 3 from the intermediate price distribution class and remaining three from the highest price distribution class. For quality evaluation 3 parameters were selected which were physical, chemical and microbial. Physical characters analyzed were general appearance, pH, solubility and moisture content. Characters which determine the chemical equivalence were assay of active ingredient and percentage of impurities present in powdered drug. Both these parameters were quantified chromatographically using high pressure liquid chromatography. Clinical efficacy of selected brands of this valuable antibiotic was accessed by determining the minimal inhibitory concentrations against Staphylococcus aureus, Salmonella typhi, Klebsiella pneumonia and Escherichia coli. Statistically all brands were significantly different from one another but all the parameters taken as quality indicators showed results within the range specified by united state pharmacopoeia. None of selected brands of ceftriaxone sodium were found to be counterfeit or even substandard. Irrespective of difference in price, no visible variation was found among different quality assessment parameters, all samples showed compliance with the international pharmacopoeial standards. Through this study it can be concluded that the quality of ceftriaxone in Pakistan is well regulated, all the registered brands are up to the mark and irrespective of variation in price there is no variation in the quality of brands. Availability: Items available for loan: UVAS Library [Call number: 1462,T] (1).

2. Biochemical And Histopathologica; Evaluation Of Detoxification Of Ochratoxin A By Lactic Acid Bacteria In Broiler Chickens

by Tanzila Wazir | Miss Huma Mujahid | Dr. Abu Saeed Hashmi | Miss. Maryam.

Material type: book Book; Format: print ; Literary form: not fiction Publisher: 2014Dissertation note: Abstract Availability: Items available for loan: UVAS Library [Call number: 2102,T] (1).

3. Delignification Of Rice Husk By Organic Solvent Treatment To Increase It’s In Vitro Digestibility

by Awais Alam (2012-VA-604) | Dr. AbuSaeed Hashmi | Miss Huma Mujahid | Dr. Asif Nadeem.

Material type: book Book; Literary form: not fiction Publisher: 2014Dissertation note: The major constituent of plant cell wall is lignocellulose. Plant biomass mostly consist of cellulose, hemicellulose and lignin alongside little measures of pectin, protein, extractives (dissolvable nonstructural materials, for example, sugars, nitrogenous material, chlorophyll, waxes) and ash. Lignocellulosic biomass is the most abundant organic material in nature. There is an expected yearly overall production of 10–50 billion dry tons representing about 50% of the worldwide biomass yield (Parveen et al. 2009). Numerous physicochemical, structural and compositional variables decrease the digestibility of cellulose present in lignocellulosic material. So a treatment is required to increase the digestibility of lignocellulose biomass by exposing the cellulose present in plant fibers. Different techniques have been utilized for treatment, including chemical treatment, ammonia fiber explosion, biological treatment and steam explosion to modify the cellulosic structure to increase the availability of cellulose for digestion (Haoran et al. 2013). At that point, acids, bases and enzymes might be utilized to break down the cellulose into its respective sugars. Cellulolytic enzymesare broadly used to break down cellulose into its constituent sugars. Among various agricultural wastes a broadly available waste is Rice husk (RH) which is rich in lignocellulosic material. Internationally, roughly 600 million tons of rice paddy is delivered every year. By and large 20% of the rice paddy is husk, giving a yearly aggregate generation of 120 million tons (Abbas et al. 2010). Pakistan is a rice producing country a great part of the husk produced from processing of rice is either blazed or dumped as waste. Rice husk yield in Pakistan is more than 1780 thousand tons every year (Asif et al. 2013). Rice husk produced during rice refining, makes disposal issue because of less business interest. Additionally, handling and transportation of RH is hazardous because of its low density. Rice husk ash (RHA) is an incredible environmental risk bringing about harm to land and encompassing range here it is dumped. Thus, business utilization of rice husk and its ash is the option answer for disposal problem (Dilip et al. 2014). RH are essentially made up of lignocellulose (60wt. %) and silica (11wt. %). The greater part of past investigations concentrated on the preparation of silica or other silicon based materials from RH, while the lignocellulose in RH was mostly glazed and then wasted. Thus, a methodology for comprehensive usage of RH has been produced to expand its digestibility by the breakdown of lignocellulosic mass. (Ajay et al. 2012) Numerous techniques have been adopted for treating lignocellulosic feedstocks. However just a few of them appear to be encouraging. These treatment techniques include dilute acid treatment, steam blast (CO2 blast), pH controlled water treatment, ammonia fiber expension, ammonia recycle percolation (ARP) and lime treatment. Some survey articles have been appeared for microbial biomass treatment. But the present study gave presentations on organosolv treatment process. Despite the fact that organosolv treatment is more expensive at present than the leading treatment forms, it can give some significant side products. It appears that organosolv treatment is more practical for biorefinery of lignocellulosic biomass which considers the usage of every bit of biomass parts. An essential streamlining and usage of side products may lead the organosolv treatment to be a guaranteeing one for bio refining lignocellulosic feedstock in future. Organosolv treatment yields three different parts: dry lignin, a watery hemicellulose stream and a moderately pure cellulose division (Xuebing et al. 2009). Availability: Items available for loan: UVAS Library [Call number: 2230-T] (1).

4. Identification Of Genetic Variations In Toll Like Receptor 1(Tlr-1) Gene To Evaluate Its Potential For Enhanced Resistance To Bovine Tuberculosis

by Shehar Bano (2013-VA-09) | Dr. Maryam Javed | Prof. Dr. Tahir Yaqub | Miss Huma Mujahid.

Material type: book Book; Format: print ; Literary form: not fiction Publisher: 2015Dissertation note: Bovine tuberculosis is a disease caused by the species included in the Mycobacterium tuberculosis complex. Toll-like receptors (TLRs) are a family of conserved innate immune recognition receptors that trigger adaptive immune responses. TLR1 play an important role in host defense against mycobacteria, especially by mediating the response to mycobacterial triacylated lipopeptides. The objective of this study is the identification of single nucleotide polymorphisms within the coding region of TLR1 gene to evaluate its potential for enhanced the resistance to bovine tuberculosis in Nili-Ravi buffalo breed. Fifty blood samples of Nili-Ravi breed were collected from UVAS Pattoki Campus, Research Farm B and Buffalo Research Institute (BRI) Pattoki. Inorganic method was used for DNA extraction, for amplification of the coding region of TLR1 gene PCR (Polymerase Chain Reaction) was used using specially designed primers and the PCR products were sequenced through Sanger’s Chain Termination method. For the analysis and alignment of sequencing the results obtained after sequencing were analyzed and aligned using the CLUSTAL W and BLAST software. After all these analysis Ten SNPs were identified in the coding region of TLR1 mentioned in table. The Ten SNPs identified in the coding region of TOLL LIKE RECEPTOR 1 were in this order P1 C>T, P2 T>C, P3 T>C, P4 T>C, P5 T>C, P6 C >T, P7 T>C, P8 C >T, P9 A>G and P10 A>G. The one SNP found in the current research is in compliance with the (Sun et al. 2012) research on TOLL LIKE RECEPTOR 1 hence Nine SNPs found in the current research are novel in Nili Ravi buffalo. The SNPs in the exonic region that is P1 C>T, P2 T>C, P3 T>C, P4 T>C, P5 T>C, P6 C >T, P7 T>C, P8 C >T, P9 A>G and P10 A>G were all transitions i.e. the conversion of purines to purines. Population genetic analysis and allelic distribution at all loci was analyzed using POPGENE 32 software indicated that at [P3=0.243009> 0.05] followed the assumptions of the Hardy-Weinberg equilibrium indicating that the alleles were randomly distributed throughout the population, no migration had occurred, no bottlenecks happened and population remained large in numbers.This Non-significant and obeying HWE, so can be potential marker for genetic selection.At [P1= 0.040418< 0.05], [P2=0.033603< 0.05], [P4=0.000649< 0.05], [P5=0.000262< 0.05], [P7=0.015112< 0.05] and [P9=0.000111< 0.05] the probability value below 0.05 indicated that population at these polymorphic sites was not obeying Hardy-Weinberg equilibrium. This indicated that at these positions alleles were not equally distributed in population. It can be concluded from my research that the SNPs identified in the current research may also hold potential for marker-assisted breeding programs, with the aim of breeding more BTB-resistant animals and herds within both the national farms and the private sector. Availability: Items available for loan: UVAS Library [Call number: 2335-T] (1).



Implemented and Maintained by UVAS Library.
For any Suggestions/Query Contact to library or Email:rehana.kousar@uvas.edu.pk Phone:+91 99239068
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.