Your search returned 6 results. Subscribe to this search

Not what you expected? Check for suggestions
|
1. Identification Of Molecular Markers In Bmp15 Gene Of Different Pakistan Sheep And Goat Breeds

by Ahmad Nawaz | Prof.Dr.Masroor Elahi Babar | Prof. Dr | Prof. Dr. Khalid Javed.

Material type: book Book; Format: print ; Nature of contents: biography Publisher: 2011Dissertation note: Genetics of prolificacy in sheep and goat emphasize the importance of main genes which have been made known to affect litter size and rate of ovulation through various mechanisms. Natural mutations in prolific sheep and goat breeds have shown that the transforming growth factor beta (TGF-?) super family ligands such as bone morphogenetic protein 15 is crucial for ovulation and as well as for increasing litter size. Keeping in view the importance of prolificacy in sheep and goat, a research project was planed to identify the polymorphism, its association with fecundity and uncovering the nucleotide picture of BMP15 fecundity gene in sheep and goat breeds of Pakistan. In the research finding, various polymorphism, insertion and deletion of nucleotides in goat and sheep breeds of Pakistan were identified and associated with fecundity and secondly, some novel polymorphism in Pakistani goat and sheep breeds were identified which are different from the goat and sheep breeds of the world. This is the first report of the whole nucleotide of BMP15 gene in the sheep. A lot of work has been reported on these genes but total nucleotide picture in the sheep is not reported. Sequences of Bmp15 gene from sheep and goat breeds of Pakistan has been submitted to the NCBI GenBank database libraries,USA under accession numbers JN655669, JN655670, JN655671 and JN655672. It will result in fast vertical expansion of small ruminants to increase the mutton production and uplift the socio economic condition of small ruminant's farmers in the country. Availability: Items available for loan: UVAS Library [Call number: 1421,T] (1).

2. Characterization Of Linear Type Traits In Nili Rivei Buffaloes Of Pakistan

by Riaz Hussain Mirza | Prof. Dr. Khalid Javed | Prof. Dr. Muhammad Abdullah.

Material type: book Book; Format: print ; Literary form: drama Publisher: 2013Dissertation note: The present study on conformation recording of Nili Ravi buffaloes was planned because there was lack of studies on this aspect of Nili Ravi buffaloes. The main objective of the study was to document and characterize linear type traits in Nili Ravi buffaloes so that the buffaloes with proper body characteristics could be identified for selection and breeding programs. Nili Ravi buffalo herds maintained at Livestock Experiment Station Bhunikey, Pattoki, distt. Kasur, Livestock Experiment Station, Chack Katora distt. Bahawalpur, Livestock Experiment Station Haroonabad distt. Bahawalnagar, Livestock Experiment Station Khushab, distt. Khushab, Livestock Experiment Station Rakh Ghulaman distt. Bhakhar and some private breeders were utilized in this study. The guidelines for conformational recording of dairy cattle provided by the International Committee for Animal Recording (ICAR) were followed in this study. A total of 437 milking buffaloes were scored for linear type traits on a scale of 1-9. First scoring was performed within 15 to 90 days of calving and then each after about 90 days interval. Genetic parameters viz. heritabilities, phenotypic and genetic correlations were estimated using Best Linear Unbiased Prediction (BLUP) evaluation techniques. Influencing factors such as age of the buffalo at scoring, stage of lactation, parity, herd and season of scoring were included in the model. Individual Animal Model was fitted under Restricted Maximum Likelihood (REML) Procedure. Data were analysed using the mixed model procedure of the Statistical Analysis Systems. Genetic parameters were estimated fitting an Individual Animal Model using the ASREML set of computer programs. A total of 1180 records on different linear type traits and body measurements were generated over a scoring period of 2 years. Most of the average values for linear type traits were seen to fall under the intermediate category of 4-6. The means±SD for different linear type traits were found as 5.07±1.35, 5.23±2.35, 5.41±1.45, 5.76±0.98, 6.73±1.53, 4.91±1.85, 4.99±0.88, 4.99±0.90, 5.39±2.13, 4.78±1.1, 5.36±1.56, 4.91±1.84, 5.76±1.67, 3.58±0.88, 5.66±2.24, 6.42±0.88, 4.88±0.69, 4.92±1.08, 4.87±0.84, 5.34±1.79, 4.76±1.78, 5.97±0.94, 5.04±2.488, 5.15±1.65 and 6.44±1.03 for stature, chest width, body depth, angularity, rump angle, rump width, rear legs set, rear legs rear view, foot angle , fore udder attachment, rear udder height, central ligament, udder depth, front teat placement, teat length, rear teat placement, locomotion, body condition score, top line, bone structure, rear udder width, udder balance, teat thickness, thurl width, and temperament, respectively. A highly significant effect of herd was observed on all of the linear type traits (P< 0.0001). Effect of stage of lactation was found to be highly significant for udder conformation related traits. Parity was observed as a highly significant source of variation for some of the body traits including stature, body depth, body condition score and bone structure. However most of the udder related traits were affected by this factor. A non significant effect of parity was observed on chest width, angularity, rump angle, rump width, central ligament, locomotion, top line, udder balance, thurl width and temperament. A highly significant effect of season of scoring was observed on chest width, angularity, rump angle, rear legs set, rear legs rear view, locomotion and thurl width among body traits. However, stature, body depth, body condition score, top line, bone structure and temperament were not affected by season of scoring. Udder conformation traits including fore udder attachment, rear udder height, central ligament, rear udder width, and udder balance were affected by the season of scoring, however rest of the udder traits including udder depth, front teat placement, teat length, rear teat placement and teat thickness were not significantly different in different seasons. Significant linear effect of age of the buffalo at scoring was seen on most of the linear type traits. including stature, body depth, rear legs set, rear legs rear view, foot angle, fore udder attachment, rear udder height, central ligament, udder depth, teat length, body condition score, bone structure, rear udder width, teat thickness and thurl width. However, chest width, angularity, rump angle, rump width, front teat placement, rear teat placement, locomotion, top line, udder balance and temperament were not affected by linear effect of age. Quadratic effect of age was found as significant on most of the linear type traits except chest width, angularity, rump width, front teat placement, rear teat placement, locomotion, udder balance and temperament. Univariate heritability estimates of linear type traits were observed as for stature, 0.36±0.092; chest width, 0.10±0.081; body depth, 0.32±0.081; angularity, 0.06±0.071; rump angle, 0.15±0.071; rump width, 0.38±0.092; rear legs set, 0.02±0.07; rear legs rear view, 0.08±0.07; foot angle, 0.09±0.07; fore udder attachment, 0.21±0.07; rear udder height, 0.09±0.07; central ligament, 0.09±0.09; udder depth, 0.10±0.091; front teat placement, 0.11±0.091; teat length, 0.08±0.091; rear teat placement, 0.11±0.081; locomotion, 0.06±0.06; body condition score, 0.14±0.091; top line, 0.03±0.05; bone structure, 0.09±0.09; rear udder width, 0.15±0.09; udder balance, 0.16±0.07; teat thickness, 0.22±0.091; thurl width, 0.31±0.09 and temperament, 0.14±0.07, respectively. Some important positive phenotypic correlations of linear type traits with 305 days milk yield were observed as 0.18±0.04 for body depth, 0.15±0.04 for rump angle, 0.13±0.04 for rump width, 0.30±0.04 for rear udder height, 0.43±0.03 for central ligament, 0.16±0.03 for rear teat placement and 0.19±0.04 for rear udder width. Rest of the phenotypic correlations were very low. Considerable negative phenotypic correlations included -0.16±035 for body condition score, -0.15±0.04 for top line, -0.16±0.03 for front teat placement, -0.14±0.04 for udder depth and -0.26±0.04 for fore udder attachment. Most of the linear type traits showed positive but low genetic correlation with 305 days milk yield including 0.140±0.0001 with stature, 0.210±0.0001 with body depth, 0.11±0.0001 with rump angle, 0.19±0.0002 with rump width, 0.14±0.0001 with rear udder height, 0.20±0.000001 with central ligament, 0.14±0.0000001 with rear teat placement, 0.13±0.0001 with rear udder width, 0.14±0.0000001 with udder balance, 0.09±0.0001 with thurl width and 0.12±0.0000001 with temperament. Phenotypic and genetic correlations of most the linear type traits with score day milk yield were generally higher than with 305 days milk yield. Phenotypic correlations with score day milk yield were observed as 0.09±0.03 for stature, -0.21±0.03 for chest width, -0.05±0.04 for body depth, -0.17±0.03 for angularity, -0.12±0.03 for rump angle, -0.16±0.05 for rump width, -0.32±0.03 for rear legs set, -0.16±0.04 for rear legs rear view, -0.22±0.03 for foot angle, -0.34±0.03 for fore udder attachment, -0.16±0.04 for rear udder height, -0.16±0.04 for central ligament, -0.25±0.03 for udder depth, 0.06±0.04 for front teat placement, 0.008±0.03 for teat length, -0.19±0.04 for rear teat placement, -0.15±0.04 for locomotion, -0.22±0.03 for body condition score, -0.35±0.03 for top line, -0.08±0.04 for bone structure, -0.17±0.05 for rear udder width, -0.18±0.04 for udder balance, -0.20±0.03 for teat thickness, -0.11±0.04 for thurl width and -0.11±0.05 for temperament, respectively. Genetic correlations with score day milk yield were observed as 0.57±0.05 for stature, 0.09±0.02 for chest width, 0.31±0.04 for body depth, 0.06±0.02 for angularity, 0.15±0.03 for rump angle, 0.30±0.05 for rump width, 0.04±0.02 for rear legs set, 0.06±0.01 for rear legs rear view, 0.06±0.02 for foot angle, 0.10±0.02 for fore udder attachment, 0.18±0.03 for rear udder height, 0.12±0.02 for central ligament, 0.18±0.02 for udder depth, 0.60±0.06 for front teat placement, 0.23±0.03 for teat length, 0.07±0.01 for rear teat placement, 0.021±0.02 for locomotion, 0.12±0.02 for body condition score, 0.08±0.02 for top line, 0.08±0.03 for bone structure, 0.19±0.04 for rear udder width, 0.19±0.03 for udder balance, 0.095±0.02 for teat thickness, 0.12±0.02 for thurl width and 0.27±0.05 for temperament, respectively. Among body measurements, head related measurements included head length, horn diameter at base, length and width of ear and poll width and their average values were found as 54.13±3.48, 18.65±2.06, 29.5±2.12 and 18.66±1.22, and 30.95±2.35 cm, respectively. Average values for neck length and neck circumference were observed as 53.32±4.56 and 95.77±8.58 cm, respectively. The height and length of body was measured at different body points and average values were found as 139.56±6.29 cm for horizontal body length, 154.01±7.61 cm for diagonal body length, 135.77±4.4 cm for height at sacrum, 132.04±4.57 cm for height at withers, 130.77±4.61 cm for height at 6th rib position, 126.34±4.51 cm for height at last rib position, 128.89±4.83 cm for height at hook bone and 118.81±4.45 cm for height at pin bone. The average values for heart girth, paunch girth, sprung at 6th rib position and sprung at last rib position were resulted as 194.46±10.31, 238.52±13.96, 45.15±4.48 and 68.72±5.2 cm, respectively. Mean estimates for top wedge area, front wedge area and side wedge area were obtained as 3152.79±309.53, 1030.17±136.34 and 3105.07±345.26 cm2, respectively. The length of tail and its diameter at base was measured and its value averaged 103.51±12.55 and 22.41±2.005 cm, respectively. Average values of skin thickness at neck, ribs, belly and tail region were found as 4.16±1.16, 5.85±1.36, 7.34±1.49 and 1.71±0.55 mm, respectively. Mean values for some other traits included 43.52±2.582 cm for rump length, 3.12±0.56 cm for heel depth and 523.13±81.63 kg for body weight. It was observed that herd was a significant source of variation for all body measurement traits. Age of the buffalo at classification was a significant source of variation for all of the body measurements except horn diameter at base, poll width, tail length, skin thickness at tail and height at hook bone. Most of the body measurements have been found to be lowly to moderately heritable in the current study. Heritability estimates for various body measurements were observed as 0.16±0.09 for horn diameter at base, 0.38±0.04 for ear length, 0.06±0.09 for ear width, 0.25±0.091 for head length, 0.14±0.09 for poll width, 0.03±0.06 for neck circumference, 0.05±0.07 for neck length, 0.05±0.09 for body length, 0.05±0.09 for diagonal body length, 0.41±0.09 for tail length, 0.28±0.091 for tail diameter at base, 0.04±0.09 for skin thickness at neck, 0.02±0.09 for skin thickness at ribs, 0.10±0.09 for skin thickness at belly, 0.07±0.08 for skin thickness at tail, 0.11±0.09 for height at sacrum, 0.28±0.09 for height at withers, 0.22±0.092 for height at 6th rib position, 0.25±0.092 for height at last rib position, 0.18±0.091 for height at hook bone, 0.07±0.08 for height at pin bone, 0.04±0.06 for sprung at 6th rib position, 0.07±0.06 for sprung at last rib position, 0.13±0.09 for heart girth, 0.05±0.09 for paunch girth, 0.11±0.09 for top wedge area, 0.05±0.06 for front wedge area, 0.16±0.07 for side wedge area, 0.13±0.08 for rump length, 0.02±0.06 for heel depth and 0.33±0.07 for body weight. Phenotypic correlations of 305 days milk yield with various body measurements were in low range. Positive phenotypic correlations ranged from 0.02±0.04 for sprung at 6th rib position to 0.17±0.05 for ear length. Some of the important body measurements have positive phenotypic correlation with 305 days milk yield as 0.15±0.04 for head length, 0.04±0.04 for diagonal body length, 0.04±0.02 for height at withers, 0.11±0.03 for height at sacrum, 0.11±0.04 for sprung at last rib position, 0.04±0.04 for heart girth, 0.08±0.03 for rump length and 0.07±0.03 for body weight. Negative phenotypic correlations with 305 days milk yield ranged from -0.03±0.03 for side wedge area to -0.25±0.03 for horn diameter at base. Some important negative phenotypic correlations included -0.25±0.03 for horn diameter at base, -0.04±0.04 for neck circumference, -0.12±0.03 for skin thickness at neck and -0.08±0.03 for front wedge area. Positive phenotypic correlation with score day milk yield included 0.09±0.05 for body weight, 0.07±0.002 for rump length, 0.09±0.003 for sprung at last rib position, 0.09±0.005 for height at hook bone, 0.08±0.02 for height at sacrum. Rest of all the traits were low in correlation with milk yield. Negative phenotypic correlation with score day milk yield included horn diameter at base as -0.15±0.02 and heel depth as -0.13±0.04. Rest of all negative phenotypic correlations were very low. Positive genetic correlations of 305 days milk yield varied from 0.02±0.002 for ear width to 0.23±0.02 for side wedge area. Some important body measurements have positive genetic correlation values as 0.121±0.000001 for head length, 0.162±0.000001 for diagonal body length, 0.080±0.000001 for height at withers, 0.15±0.000001 for height at sacrum, 0.15±0.000001 for sprung at last rib position, 0.14±0.0005 for heart girth and 0.16±0.007 for body weight. Negative genetic correlation for this trait was observed only for skin thickness at neck region as -0.16±0001. About 40 traits regarding udder and teat measurements before and after milking were analysed. Average values for udder length, width, height, depth and circumference before milking were found as 52.65±6.87, 53.52±6.19, 54.34±4.99, 18.76±3.87, and 77.05±11.69 cm, respectively while the corresponding values for the same traits after milking were found as 47.08±6.57, 48.15±5.79, 55.39±5.15, 18.11±4.11 and 67.04±8.11 cm, respectively. Teat impression distances between front teats, rear teats, fore and rear teats from right side and fore and rear teats from left side were found as 12.46±3.01, 7.01±1.91, 8.08±1.8 and 7.71±1.75 cm, respectively. Pre stimulation and after milking teat characteristics were found as 12.93±3.12 and 11.71±2.83 cm for distance between front teats; 7.48±1.93 and 6.61±1.58 cm for distance between hind teats; 8.34±1.91 and 7.54±1.60 cm for distance between fore and hind teats of right side; 8.004±1.95 and 7.17±1.60 cm for distance between fore and hind teats of left side; 10.19±2.17 and 9.057±1.50 for diameter of fore right teat; 10.92±2.45 and 9.611±1.66 cm for diameter of rear right teat; 10.33±2.11 and 9.33±1.45 cm for diameter of fore left teat; 11.25±2.54 and 9.937±1.76 cm for diameter of rear left teat; 10.71±2.63 and 11.2±2.39 cm, for teat length of fore right teat; 13.05±3.27 and 13.13±3.03 for teat length of rear right teat; 11.09±2.71 and 11.88±2.61 cm for teat length fore left teat and 13.75±3.04 and 14.47±2.99 for teat length of rear left teat, respectively. All of the udder conformation traits before and after milking were highly significantly different in different herds (P<0.0001). Stage of lactation was found to be highly significant source of variation (P<0.0001) for before milking udder length, before milking udder height, average before milking udder circumference, after milking udder length, after milking average udder circumference, teat impression distance between fore, between rear and between fore and rear teats on both sides. However, before milking average udder width, before milking udder depth, after milking average udder width, after milking udder height and after milking udder depth were not affected by this factor. All of the above mentioned traits were significantly affected by parity except after milking udder depth and teat impression distance between fore teats and between rear teats. Season of scoring significantly affected before milking udder length (P<0.01), before milking average udder width (P<0.05), before milking average udder circumference (P<0.01), after milking average udder width (P<0.01), after milking average udder circumference (P<0.0001), teat impression distance between fore and hind teats of left side (P<0.05). Rest of all the traits were not significantly different in different seasons. Most of the udder traits were significantly affected by linear and quadratic effect of age of the buffalo at classification. Herd was a significant source of variation for all teat related traits recorded at pre stimulation before milking time. Stage of lactation significantly affected pre stimulation distance between front teats, pre stimulation distance between hind teats, pre stimulation distance between fore and hind teats on right and left side, pre stimulation diameter of fore right teat, pre stimulation teat length of fore right teat, pre stimulation teat length of rear right teat, pre stimulation teat length of fore left and rear left teat. However, pre stimulation diameter of rear right teat, pre stimulation diameter of fore left teat and pre stimulation diameter of rear left teat were not affected by this factor. All of these parameters were affected by parity except pre stimulation distance between hind teats and pre stimulation teat length of fore left teat. Similarly all of these traits were affected by season of scoring except pre stimulation distance between fore, between hind, between right and between left teats. All of teat characteristics after milking were significantly affected by herd. Stage of lactation significantly affected after milking distance between fore and hind teats of right side (P<0.05), after milking teat length of fore right and rear right teat (P<0.01), after milking teat length of fore left teat (P<0.05) and rear left teat (P<0.0001). Rest of all traits after milking were not affected by stage of lactation. Most of the teat parameters after milking were significantly affected by parity except after milking distance between front and between rear teats, after milking teat length of rear right teat and after milking teat length of fore left teat. Distances among teats after milking and after milking diameter of rear left teat were not significantly affected by season. Rest of all traits were significantly affected by this factor. Heritability estimates for before milking udder length, average udder width, udder height, udder depth and average udder circumference were found as 0.08±0.07, 0.22±0.08, 0.22±0.09, 0.05±0.06 and 0.21±0.07, respectively. The corresponding values after milking for these traits were observed as 0.14±0.07, 0.20±0.08, 0.09±0.08, 0.02±0.08 and 0.09±0.07, respectively. Heritability estimates for before milking and after milking teat characteristics were found as 0.11±0.09 and 0.15±0.09 for distance between front teats; 0.03±0.06 and 0.03±0.07 for distance between hind teats; 0.32±0.09 and 0.06±0.07 for distance between fore and hind teats of right side; 0.16±0.08 and 00.09±0.07 for distance between fore and hind teats of left side; 0.21±0.08 and 0.11±0.08 for diameter of fore right teat; 0.05±0.05 and 0.02±0.05 for diameter of rear right teat; 0.19±0.08 and 0.25±0.09 for diameter of fore left teat; 0.07±0.06 and 0.03±0.07 for diameter of rear left teat; 0.12±0.06 and 0.08±0.06 for teat length of fore right teat; 0.02±0.05 and 0.11±0.07 for teat length of rear right teat; 0.29±0.09 and 0.29±0.092 for teat length of fore left teat and 0.14±0.08 and 0.08±0.07 for teat length of rear left teat, respectively. Phenotypic correlations of before and after milking udder length, average udder width, udder height, udder depth and average udder circumference with 305 days milk yield were found as 0.29±0.04 and 0.18±0.04; 0.30±0.04 and 0.33±0.04; -0.26±0.03 and -0.20±0.03; 0.07±0.04 and 0.06±0.05 and 0.18±0.04 and 0.14±0.04, respectively. Corresponding values in the same order for genetic correlations were observed as 0.17±0.0002 and 0.21±0.0003; 0.33±0.0002 and 0.19±0.0003; -0.29±0003 and -0.34±0003; 0.10±0.0001 and 0.07±0.0001 and 0.28±0.0004 and 0.23±0.0003, respectively. Phenotypic correlations of before and after milking udder length, average udder width, udder height, udder depth and average udder circumference with score day milk yield were found as 0.29±0.03 and -0.18±0.02; -0.32±0.02 and 0.17±0.01, -0.38±0.001 and -0.20±0.002, 0.28±0.01 and -0.04±0.04 and 0.21±0.04 and -0.15±0.04, respectively. Phenotypic correlations for pre stimulation and after milking teat characteristics with 305 days milk yield were found as 0.19±0.03 and 0.07±0.03 for distance between front teats; 0.20±0.04 and 0.20±0.04 for distance between hind teats; 0.21±0.03 and 0.21±0.03 for distance between fore and hind teats of right side; 0.18±0.03 and 0.18±0.03 for distance between fore and hind teats of left side; 0.07±0.03 and 0.27±0.04 for diameter of fore right teat; -0.04±0.03 and 0.14±0.04 for diameter of rear right teat; -0.03±0.04 and 0.20±0.04 for diameter of fore left teat; -0.02±0.04 and 0.20±0.03 for diameter of rear left teat; 0.24±0.03 and 0.28±0.03, for teat length of fore right teat; -0.13±0.03 and -0.009±0.04 for teat length of rear right teat; 0.01±0.02 and 0.12±0.03 for teat length fore left teat and 0.06±0.03 and 0.22±0.03 for teat length of rear left teat, respectively. Genetic correlations for pre stimulation and after milking teat characteristics with 305 days milk yield were found as 0.22±0.0002 and 0.12±0.0003 for distance between front teats; 0.26±0.0001 and 0.13±0.0001 for distance between hind teats; 0.11±0.0001 and 0.09±0.0001 for distance between fore and hind teats of right side; 0.10±0.0001 and 0.07±0.0001 for distance between fore and hind teats of left side; 0.11±0.0001 and 0.11±0.0001 for diameter of fore right teat; 0.09±0.0002 and 0.16±0.0001 for diameter of rear right teat; 0.001±0.000001 and 0.001±0.0001 for diameter of fore left teat; 0.001±0.000001 and 0.001±0.0001 for diameter of rear left teat; 0.080±0.00001 and 0.11±0.0001 for teat length of fore right teat; 0.07±0.000001 and 0.001±0.0002 for teat length of rear right teat; 0.003±0.000001 and 0.003±0.0003 for teat length fore left teat and 0.003±0.000001 and 0.002±0.0002 for teat length of rear left teat, respectively. Phenotypic correlations for pre stimulation and after milking teat characteristics with score day milk yield were found as -0.37±0.02 and -0.48±0.03 for distance between front teats; 0.04±0.04 and 0.06±0.04 for distance between hind teats; 0.04±0.04 and 0.03±0.04 for distance between fore and hind teats of right side; 0.03±0.039 and 0.08±0.04 for distance between fore and hind teats of left side; -0.33±0.03 and -0.16±0.04 for diameter of fore right teat; -0.46±0.03 and -0.26±0.04 for diameter of rear right teat; -0.41±0.03 and -0.24±0.04 for diameter of fore left teat; -0.30±0.03 and -0.28±0.04 for diameter of rear left teat; -0.43±0.03 and -0.49±0.03 for teat length of fore right teat; -0.36±0.02 and -0.47±0.02 for teat length of rear right teat; -0.41±0.034 and -0.43±0.03 for teat length fore left teat and -0.28±0.021 and -0.53±0.02 for teat length of rear left teat, respectively. Genetic correlations for before and after milking teat characteristics with score day milk yield were found as 0.13±0.016 and 0.15±0.02 for distance between front teats; 0.30±0.04 and 0.40±0.05 for distance between hind teats; 0.19±0.05 and 0.38±0.05 for distance between fore and hind teats of right side; 0.32±0.06 and 0.44±0.06 for distance between fore and hind teats of left side; 0.22±0.03 and 0.27±0.04 for diameter of fore right teat; 0.16±0.02 and 0.23±0.03 for diameter of rear right teat; 0.15±0.02 and 0.22±0.03 for diameter of fore left teat; 0.11±0.02 and 0.24±0.03 for diameter of rear left teat; 0.19±0.02 and 0.17±0.02 for teat length of fore right teat; 0.075±0.01 and 0.07±0.01 for teat length of rear right teat; 0.27±0.029 and 0.27±0.03 for teat length of fore left teat and 0.10±0.01 and 0.08±0.01 for teat length of rear left teat, respectively. Least squares means for various performance traits were found as 7.02±2.46 for score day milk yield, 1801.61±624.59 for lactation milk yield, 2074.1±360.85 for 305 days milk yield, 2149.09±680.59 for best milk yield, 272±69 for lactation length, 408.553±203.63 for preceeding dry period, 1762.05±305.97 for age at first calving, 477.68±64.53 for weight at first calving, 110±33 for age at scoring in months, 523.133±81.63 for weight at scoring in Kg. Most of the phenotypic studies on Nili Ravi breed are limited to recording only few body measurements. In order to explore the physical features of this breed, linear scoring system needs to be adopted which is based on measurement of certain specific parts of body as per international standards according to the ICAR guidelines. However, some of the linear scores developed for dairy cattle breeds do not fit for this breed and harmonization of certain trait definitions is needed even for the linear score system for this breed. The following points are important regarding linear scoring system for Nili Ravi buffaloes: " In case of rump angle, the score ranging as 1-3 which refers to higher pin bone than hook bone is not present in Nili Ravi buffaloes. The score for central ligament ranging as 1-3 which refers to convex floor of udder has not been observed in this breed. The position of front teat placement as inside of quarter scoring as 7-9 has not been observed in Nili Ravi buffaloes. The position of rear teat placement as outside of quarter scoring as 1-3 has not been observed in Nili Ravi buffaloes. The score for top line ranging as 8-9 which represents a back bent upwards has not been observed in this breed. The score of 1 and 2 which represents a rear udder deeper than the fore udder has also not been observed in the present study. A higher temperament score indicates that buffaloes tend to be excited especially at the time of milking and handling. This behaviour of buffaloes needs to be improved through selection and breeding. " A highly significant effect of herd was observed on all of the linear type traits. Effect of stage of lactation was found to be highly significant for udder conformation related traits including fore udder attachment, rear udder height, central ligament, udder depth, teat length and rear udder width. Most of the udder related traits were affected by parity such as fore udder attachment, rear udder height, udder depth, teat length, rear udder width and teat thickness. significant effect of parity was observed on chest width, angularity, rump angle, rump width, top line, thurl width, and temperament. " Initiation of conformation recording in public and private sector and use of selective and planned breeding will be helpful for the improvement in milk yield and to bring uniformity in body features of Nili Ravi buffaloes. " Scoring in first parity should be adopted as in later parities adjustment for age and parity will be needed. " Differences among herds for most of the traits suggest that performance can be improved by exploiting genetic potential through selection and breeding. Heritability estimates for most of the linear type traits were found as higher than the reported values available in literature. The reasons might be due to species differences and relatively small data set as well as incomplete pedigree records. Even then the results might be considered for inclusion of some of the linear type traits in selection programs. Keeping in view that this is a preliminary study on genetic aspects of linear type traits in Nili Ravi buffaloes, further studies and research with larger data set is needed to explore linear type traits and to validate the findings of the current study. " A positive genetic correlation of stature with milk yield suggest that taller and heavier buffaloes produced more milk and selection for taller buffaloes may result in improved milk yield but the efficiency of milk yield must be studied before making indirect selection for milk yield through stature. Negative phenotypic correlation of chest width with score day milk yield suggested that buffaloes with wider chest are relatively less efficient in milk production. Further studies are needed with larger data set to verify the results. A considerable positive genetic correlation between body depth and milk yield suggest that body depth may be considered for indirect selection of higher milk yield in Nili Ravi buffaloes. Considerable genetic correlation with milk yield suggest that rump width is important in this breed of buffaloes and can be used for indirect selection for improved milk yield. A considerable negative phenotypic correlation of fore udder attachment with milk yield is important however negligible genetic correlation suggest that fore udder attachment is independent of milk producing genes and separate selection for each trait should be considered keeping in view heritability of the trait in Nili Ravi buffaloes. A positive genetic correlation of rear udder height with milk yield suggested that selection for this trait might be helpful for improved milk yield in Nili Ravi buffaloes. Genetic correlation of teat length with score day milk yield is considerable in the current study but very low with 305 days milk yield. The findings of current study suggested that rear teat placemen has a considerable genetic correlation with milk yield and can be used for indirect selection for better milk yield. The results of current study are not in agreement with most of the reports in the literature regarding correlation of BCS with milk yield. Further research is needed to verify positive genetic correlation of BCS with milk yield before using BCS as selection criterion for milk yield in Nili Ravi buffaloes. Due to negative phenotypic correlation of body condition score with milk yield, an optimal score of below average ranging from 4 to 5 may be recommended. A positive genetic correlation of rear udder width with milk yield suggested that some of the same genes are controlling milk yield and rear udder width and indirect selection for improved milk yield is possible through selection for rear udder width in Nili Ravi buffaloes. This genetic correlation with milk yield is considerable but further studies are needed before the udder balance could be included for selection program in Nili Ravi buffaloes. " Current study indicated that teat thickness is not genetically important with negligible correlation with milk yield in Nili Ravi buffaloes but negative phenotypic correlation is considerable and buffaloes with thinner teats are suitable for more milk production. A low but positive genetic correlation of thurl width with milk yield provides a scope for further studies to explore this trait in Nili Ravi buffaloes. Further studies are needed with relatively larger data set to explore temperament and verify its relationship with milk yield in this breed of buffaloes. Generally, the least squares means for most of the body measurements were found in the normal range and were in agreement with most of the reports in literature. " Comparatively higher body weight was observed than the reports available for Nili Ravi buffaloes. One of the reason for this might be relatively better supply of feed and fodder during the course of study and also the records pertaining to 3rd and latter parities were more in number than the records on younger buffaloes. The top and side wedge area are almost similar with less variation showing that Nili Ravi buffaloes are relatively more wedge shaped. " Most of the body measurements were affected by the herd and age factors but the effect of parity, stage of lactation and season of scoring was variable for different traits and showed not very clear trend. Body weight was affected by all the factors studied in the current investigation. Most of the body measurements have been found to be moderately to highly heritable in the current study. Overall range of heritability estimates for body measurements was found as 0.08±0.09 to 0.92±0.00. " Skin thickness has been found under the genetic control and can be improved through selection and breeding keeping in view its importance and demand in the leather industry and also its correlation with milk yield. " Diagonal body length in the current study has shown a low but positive genetic correlation with milk yield and this trait might be considered in the selection program for Nili Ravi buffaloes. The negative genetic correlation of skin thickness in the neck region with 305 days milk yield is important and advocates the thinking of farmers about the negative correlation of skin thickness with milk yield. Genetic correlation of heart girth with milk yield although not very high but seems to be important and can be considered for indirect selection for milk yield through heart girth measurement. A reasonable genetic correlation of body weight with milk yield suggested that this trait should be considered in the selection program for improved milk yield in Nili Ravi buffaloes. " Udder colour has not been found important. Buffaloes with pendulous udders have produced more milk. The possible reason for this more milk is that such buffaloes were recorded in latter parities and age of those buffaloes was high and the size of their udder was large. The frequency of buffaloes with such type of udder is only 8%. Buffaloes with such type of pendulous udders are more prone to udder and teat injuries and mastitis and their life time production is less. Thick and lengthy teats have been observed in this breed and the reason might be due to hand milking and direct suckling of cows by the calves. " Most of the udder traits were significantly affected by herd, parity, stage of lactation and age of the buffaloes at classification. Most of the udder measurements have been found highly heritable and this provides a good scope for improvement of these traits through selection and breeding. A general decrease in the distance between fore, rear and fore and rear teats on both sides was observed after milking. This indicated that the distance measured after milking was a good indicator of actual distance between teats of this breed irrespective of stage of lactation. Udder length, width, udder circumference and height either recorded before milking or after milking have been found genetically correlated with milk yield and they should be considered for selection decisions in Nili Ravi buffaloes. A reasonable positive genetic correlation of distance between fore and between rear teats suggested that this distance is important for milk yield and should be considered for selection in Nili Ravi buffaloes. The results of present study suggest that teat diameter is not genetically much important for milk yield and the reason of thick teats is due to hand milking and direct suckling by the calves. " Teat distance between front teat, between rear teat, diameter of fore right and rear right teat and teat length of fore right teat have shown low but not negligible genetic correlations with milk yield and should be given some importance in making selection decisions in Nili Ravi buffaloes. " Brown colour buffaloes have not been observed in this study because such animals at Govt. livestock farms are culled at an early age, however farmers think that such type of buffaloes are better milk yielder and they like and demand such animals, development and conservation of these animals is advocated at experimental level to study their potential. " Further research is needed to evaluate visual image analysis system as a tool for quick and more accurate conformation recording. Availability: Items available for loan: UVAS Library [Call number: 1708,T] (1).

3. Comparative Productive And Reproductive Performance Of Beetal Goats In Accelerated And Annual Kidding Systems

by Nisar Ahmad | Prof. Dr. Khalid Javed | Prof. Dr. Muhammad Abdullah.

Material type: book Book; Format: print ; Literary form: not fiction Publisher: 2013Dissertation note: Three kiddings in two years or five kiddings in three years refers as accelerated kidding which is helpful to have more kids, helps to fetch higher market prices during off-season. This can also increase life time production in the form of meat, milk and fiber. High reproduction rate is the basiccondition to increase efficiency of production. Most of the goats do not follow seasonal breeding pattern and breed round the year resulting in management problems and high mortality during severe weather conditions. Accelerated kidding strategy is a viable option that affects the health and fertility of the flock. In the present investigation, three experiments were conducted at Small Ruminant Training and Research Centre (SRT&RC) Ravi Campus Pattoki, UVAS, Lahore. The experiment-I was about the initiation of estrus activity in anestrus Beetal goats during low breeding season. Twenty Beetal goats were selected from the existing flock, maintained at SRT&RC. These goats were divided randomly into 4 groups i.e. A, B, C and D having 5 animals in each group. Group A was treated as negative control by offering only green fodder, group B was provided flushing ration along with green fodder (control), group C was kept on green fodder along with hormone therapy of gonadotropin releasing hormone (GnRH) and prostagladin (PGF2?) while group D was provided with green fodder, flushing ration (600 gms/animal) and hormone therapy by providing GnRH and PGF2?. Hundred percent estrus induction was achieved in group B, C and D as compared to group A. The results revealed that fertility rate and kidding rate was high i.e. 80 and 60 percent among animals of B group while animals of control group had less fertility, kidding and gestation rate. The shortest gestation length was found in group B and C while triplet births were observed in goats of group D. The experiment-II was regarding the initiation of estrus through buck effect in Beetal goats. This experiment was conducted in two phases. Phase 1 comprised two groups A and B for which estrus induction was done during pre-breeding (August) and normal breeding (September/October) season. Similarly, Phase 2 comprised two groups C and D in which estrus induction was done during post-breeding (December) and normal breeding (September/October) season. Different reproductive parameters like estrus, fertility percentage, were noted. The data regarding average birth weight (kg) and gestation length (days) were recorded. Estrus signs were maximum in group B while low in group C. However fertility rate was high in group A, instead of group B. Overall kidding percentage was higher in A group but the lowest in group D. The highest gestation length was observed in group D whereas the lowest value was found in group B. Average litter size was higher in group D as compared to A and B group, respectively. The experiment-III was conducted to compare productive and reproductive performance of Beetal goats in accelerated and annual kidding systems. Total of 50 adult Beetal goats were divided into two groups viz. accelerated kidding and annual kidding having 25 animals each. The does were selected on the basis of their age, body size, weight and parity. Different breeding bucks were used for each group having similar size, weight and age. All the animals included in this study were fed according to national research council (NRC) nutrient requirements for goats (NRC, 1981). Flushing rations and estrus inducing hormones both were provided to the does of respective groups for preparation of breeding activity during out of season breeding. The annual kidding group was considered as the control group, while the does were bred every eight months for accelerated kidding. The offsprings produced by the pregnant does of 1st batch of both the groups were reared under similar managemental conditions up to maturity. Three crops were produced in accelerated kidding system as compared to two crops in annual kidding system. It was observed that more number of animals i.e. 17 out of 25 showed estrus signs as compared to annual kidding system where 15 animals showed estrus signs. There were non significant differences for number of services per conceptionin two crops under annual kidding groups. Higher percentage of estrus was observed in accelerated to annual kidding. Total number of kids produced in accelerated kidding system was 42 with an average 14 kids in three crops while 23 kids were produced in annual kidding system in two years. Average cost of concentrate was observed high in accelerated kidding system as compared to annual kidding system. Birth weight of kids produced in 3 different seasons i.e. March-April, October- November and June-July were found as 2.84, 2.91 and 2.98 kg. The overall results in term of reproductive efficiency, oestrus behavior and kidding percentage were better in accelerated group than annual kidding. Availability: Items available for loan: UVAS Library [Call number: 1812,T] (1).

4. Documenting Goat Production System In Two Agro-Ecological Regions Of Punjab

by Maqsood shah muhammad | Prof. Dr. Muhammad Abdullah | Prof. Dr | Prof. Dr. Khalid javed.

Material type: book Book; Format: print ; Literary form: not fiction Publisher: 2013Dissertation note: Abstract Availability: Items available for loan: UVAS Library [Call number: 1920,T] (1).

5. Effect Of Feeding Milk Replacer And Diet With Varying Levels Of Concention On Growth Puberty And First Lactation

by Zeeshan Iqbal | Prof Dr. Muhammad Abdullah | Prof. Dr | Prof. Dr. Khalid Javed.

Material type: book Book; Format: print ; Literary form: not fiction Publisher: 2013Dissertation note: Abstract Availability: Items available for loan: UVAS Library [Call number: 2160,T] (1).

6. Effect Of Different Dietary Lysine Levels And Feed Restriction Regimes On Growth Performance And Slaughtering Characteristics In Japanese Quail (Coturnix Coturnix Japonica) Maintained During Hot Season

by Yassar Abbas (2008-VA-753) | Dr. Abdul Waheed Sahota | Prof. Dr. Muhammad Arkam | Prof. Dr. Khalid Javed.

Material type: book Book; Literary form: not fiction Publisher: 2015Dissertation note: High prices, global shortage of feed ingredients and less supply of animal protein against great demand as consequence of ever increasing human population needs to enhance protein supply. One way of enhancing protein supply is to expand poultry production along with increasing production of other micro livestock such as Japanese quail (Coturnix coturnix japonica) having low maintenance cost, short generation intervals, early sexual maturity and better resistance to diseases and its meat being rich in high quality protein having high biological value with low caloric content. Profit can be optimized by minimizing feed cost that accounts for 60-70 % of the total production cost and any improvements in the performance of birds by manipulation of feeding strategies inevitably have a profound effect on profitability. Any effort to improve commercial poultry production and enhance its efficiency needs to emphasize on better utilization of existing resources. Among different feeding management schemes and strategies phase feeding may be employed with the logic seems to feed birds for shorter periods of time to exactly meet but not exceed the amino acids requirements hence improvement in carcass characteristics and reduction of dietary cost. Commercial availability of very vital limiting amino acids (lysine) has set a new tendency of formulation of poultry feeds having low protein level with addition of amino acids. Lysine, being utmost essential amino acid is used as a reference for other essential amino acids. Feed restriction program may be another managemental tool that may elicit compensatory growth, improved feed efficiency, carcass quality and birds are not exposed to sub optimal level of nutrients but the efficiency of utilization of these nutrients may be improved. On the other hand breed, strain, management and sex differences for carcass traits have also been reported. Very little research focus on the subject has necessitated conducting the ABSTRACT vii present study undertaken in Japanese quails on the similar pattern as adopted in broiler industry to make quail production more cost-effective and commercially viable at Avian Research and Training (ART) Centre, University of Veterinary and Animal Sciences, Lahore, Pakistan. A series of experiments at Avian Research and Training (ART) Centre, University of Veterinary and Animal Sciences, Lahore, Pakistan was run to assess the effect of different management interventions on growth performance, carcass characteristics and blood biochemical profile in Japanese quail. The first experiment was aimed to examine the growth performance and economic efficiency involving 1440 day-old Japanese quail (Coturnix coturnix japonica) chicks. Three dietary lysine levels (1.3, 1.4-1.2 & 1.5-1.3-1.1 %) in 3 different phases were allocated to four different close-bred stocks (Imported, Local-1, Local-2 and Local-3) of Japanese quails to assess their comparative growth performance by replicating each treatment for three times. The experimental day-old quail chicks were randomly divided into 36 experimental units of 40 chicks each. Quails under 1st treatment were fed a diet with 1.3 percent lysine throughout the grow-out period of 28 days, while, those under 2nd treatment were allotted diet with 1.4 percent lysine up to14 days of age and then subsequently reduced to 1.2 percent lysine up to 28 days. The 3rd treatment was split into 03 different phases. The first phase was up to 9th, 2nd up to 19th and 3rd up to 28th day by allotting diet containing 1.5, 1.3 and 1.1 % lysine, respectively. Weekly data on growth performance were recorded and analyzed through ANOVA technique in CRD under factorial arrangement and the comparison of means was worked out using DMR test by the help of SAS 9.1. Maximum (P≤0.05) feed intake; body weight gain and improved FCR were observed in three phase dietary lysine regimen leading to maximum profit margins. viii In the 2nd experiment same experimental design and phase feeding was practiced to observe organ development. Sexing with in treatment was done at the age of three weeks and quails were maintained separately for one week. At 4 week of age, 3 birds/ replicate from either sex were slaughtered through Halal Muslim method for studying carcass characteristics. Two birds per replicate from either sex were used for serum analysis of glucose, cholesterol, urea, albumen and total protein using standard procedures. The analysis showed three phase dietary lysine regimen than other dietary lysine regimens improved (P≤0.05) slaughter characteristics i.e. post slaughter weight (g), dressing percentage with and without giblets, breast yield (g), thigh yield (g), giblet weight (g), liver weight (g), keel length (cm), shank length (cm), weight of visceral organs including intestinal weight (g) and intestinal length (cm). However, heart weight (g), gizzard (empty) weight (g), serum glucose, cholesterol, urea, albumin and total protein were not significantly affected by dietary lysine regimen. While, different close bred stocks did not show any significant differences. Third experiment was executed to examine the growth performance and economic efficiency of Japanese quail (Coturnix coturnix japonica) subjected to different feed restriction regimes at ART Centre, UVAS, Lahore. For this purpose a total of 3200 quail chicks from four different close-bred stocks were allocated to four different feed restriction regimes comprising four close-bred stocks (Imported, Local-1, Local -2 and Local-3) at the age of 10 days. The experimental quails in group 1 were fed ad-libitum (20.30% CP, 1.3% Lysine, as recommended by NRC) throughout the experimental period to serve as control while groups 2, 3 and 4 were provided with 1 hour feed- 3-hour off, 2-hour feed- 2hour off and 3-hour feed-1hour off feeding regimes, respectively. The analysis of data showed that the maximum feed intake was observed in ad-libitum fed group whereas the highest body weight gain was observed in ad-libitum and 3 hour ix fed quails. The best FCR leading to maximum profit margin was observed in 3 hour-fed group. Different close-bred stocks could not express any significant difference in growth parameters. In the 4th experiment same dietary plan of time restriction as in 3rd experiment was adopted to observe organ development. At the termination of the experiment (at the age of 38 days), 6 birds (3 male and 3 female) from each replicate were randomly picked up and slaughtered (by Halal method) to study different slaughter parameters. Significantly higher (P≤0.05) carcass weight, mean dressing % with and without giblet, mean thigh weight was observed in ad-libitum and 3 hours fed quails while significantly lower mean dressing %, liver weight, gizzard weight, giblet weight, breast weight and mean intestinal length and weight in one hour fed quail. Blood profile showed significantly higher (P≤0.05) serum glucose, urea, albumin and total protein level in ad-libitum and 3-hours fed quails while significantly higher (P≤0.05) serum cholesterol level was observed in one hour fed quails. Heart weights (g), keel length (cm), shank length (cm) were not affected significantly among different treatments and close-bred stocks. Conclusion Based upon the findings of the present study it may be stated that 1. Maximum (P≤0.05) feed intake; body weight gain and improved FCR were observed in three phase dietary lysine regimen leading to maximum profit margins. 2. Significant improvement in carcass characteristics was recorded in three phase dietary lysine regimen. 3. The best FCR leading to maximum profit margin was observed in 3 hour-fed group in Japanese quails when subjected to different feed restriction regimens. x 4. Three hour fed quails showed superior carcass characteristics at par with ad-libitum fed groups especially in terms of carcass weight, dressing percentage and thigh weight. 5. Significantly higher (P≤0.05) serum glucose, urea, albumin and total protein level were recorded in ad-libitum and 3-hours fed quails while significantly higher (P≤0.05) serum cholesterol level was observed in one hour fed quails. Suggestions and Recommendations Four lysine dietary regimens having 1 week each may successfully be employed in Japanese quails in order to get maximum profit. It may further be recommended that Japanese quails may be subjected to feed restriction of 1-hour after 2nd week. The present series of experimentation is a step towards optimizing the nutritional and managemental strategies in Japanese quails, however, a lot more is still needed to be worked out in this direction. Availability: Items available for loan: UVAS Library [Call number: 2340-T] (1).



Implemented and Maintained by UVAS Library.
For any Suggestions/Query Contact to library or Email:rehana.kousar@uvas.edu.pk Phone:+91 99239068
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.